您当前的位置:成果库 > 基于多层量子脊波表示的极化SAR图像地物的分类方法
基本信息
- 成果类型 高等院校
- 委托机构 西安电子科技大学
- 成果持有方 西安电子科技大学
- 行业领域 数据分析处理
- 项目名称 基于多层量子脊波表示的极化SAR图像地物的分类方法
- 知识产权 发明专利
- 项目简介 本发明公开了一种基于多层量子脊波表示的极化SAR图像地物分类方法,主要解决现有技术特征表达不充分、分类精度低及时间复杂度高的问题。其实现步骤为:1.提取极化SAR图像的图像特征;2.将特征组合构成特征矩阵并归一化;3.从特征矩阵中选取训练数据集和测试数据集;4.用两层量子脊波网络训练训练数据集;5.用人工神经网络NN网络分类器对训练数据集训练并分类;6.利用训练好的分类器对测试数据集分类。本发明由于使用了多层量子脊波神经网络,结构更灵活,提高了极化SAR图像特征的表达能力,能够有效地提高极化SAR图像分类的精度,并降低时间复杂度,可用于复杂图像分类。
交易信息
- 意向交易额 面议
- 挂牌时间 2018/03/06
- 委托机构 西安电子科技大学
- 联系人姓名 王小刚
- 联系人电话 15802954800
- 联系人邮箱 745490733@qq.com
- 分享至: